SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
SlideShare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Create your free account to read unlimited documents.
Create your free account to continue reading.
of
Create your free account to continue reading.
349 Likes
Share
Download to read offline
Download to read offline
In this presentation I introduce various Machine Learning methods that we utilize for music recommendations and discovery at Spotify. Specifically, I focus on Implicit Matrix Factorization for Collaborative Filtering, how to implement a small scale version using python, numpy, and scipy, as well as how to scale up to 20 Million users and 24 Million songs using Hadoop and Spark.
In this presentation I introduce various Machine Learning methods that we utilize for music recommendations and discovery at Spotify. Specifically, I focus on Implicit Matrix Factorization for Collaborative Filtering, how to implement a small scale version using python, numpy, and scipy, as well as how to scale up to 20 Million users and 24 Million songs using Hadoop and Spark.
Total views
131,453
On Slideshare
0
From embeds
0
Number of embeds
13,440
Downloads
2,099
Shares
0
Comments
0
Likes
349
The SlideShare family just got bigger. You now have unlimited* access to books, audiobooks, magazines, and more from Scribd.
Cancel anytime.